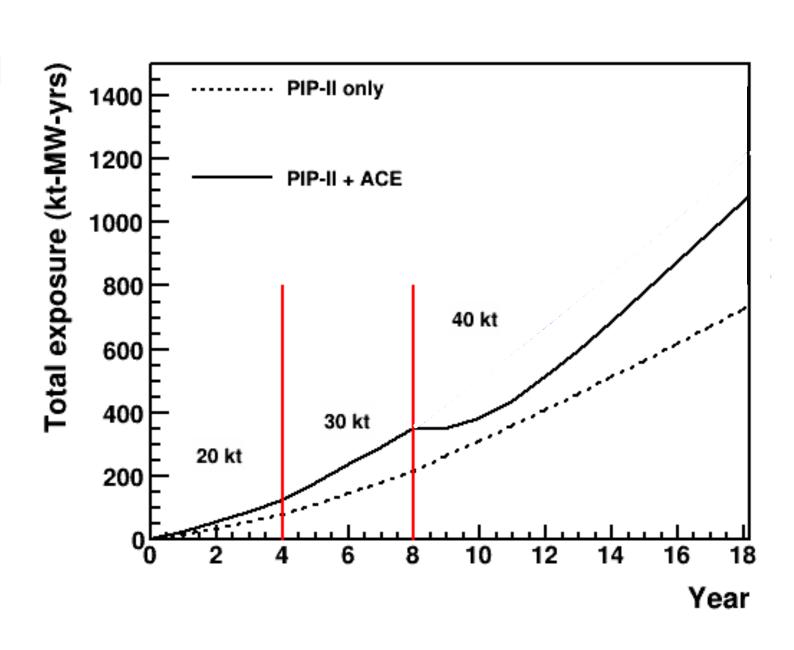
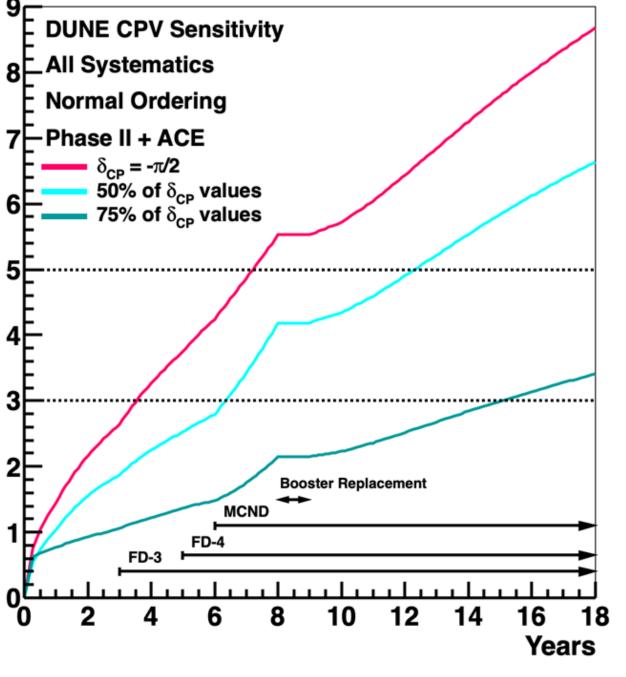

DUNE PHASE II NEAR DETECTOR

H. A. Tanaka (SLAC)

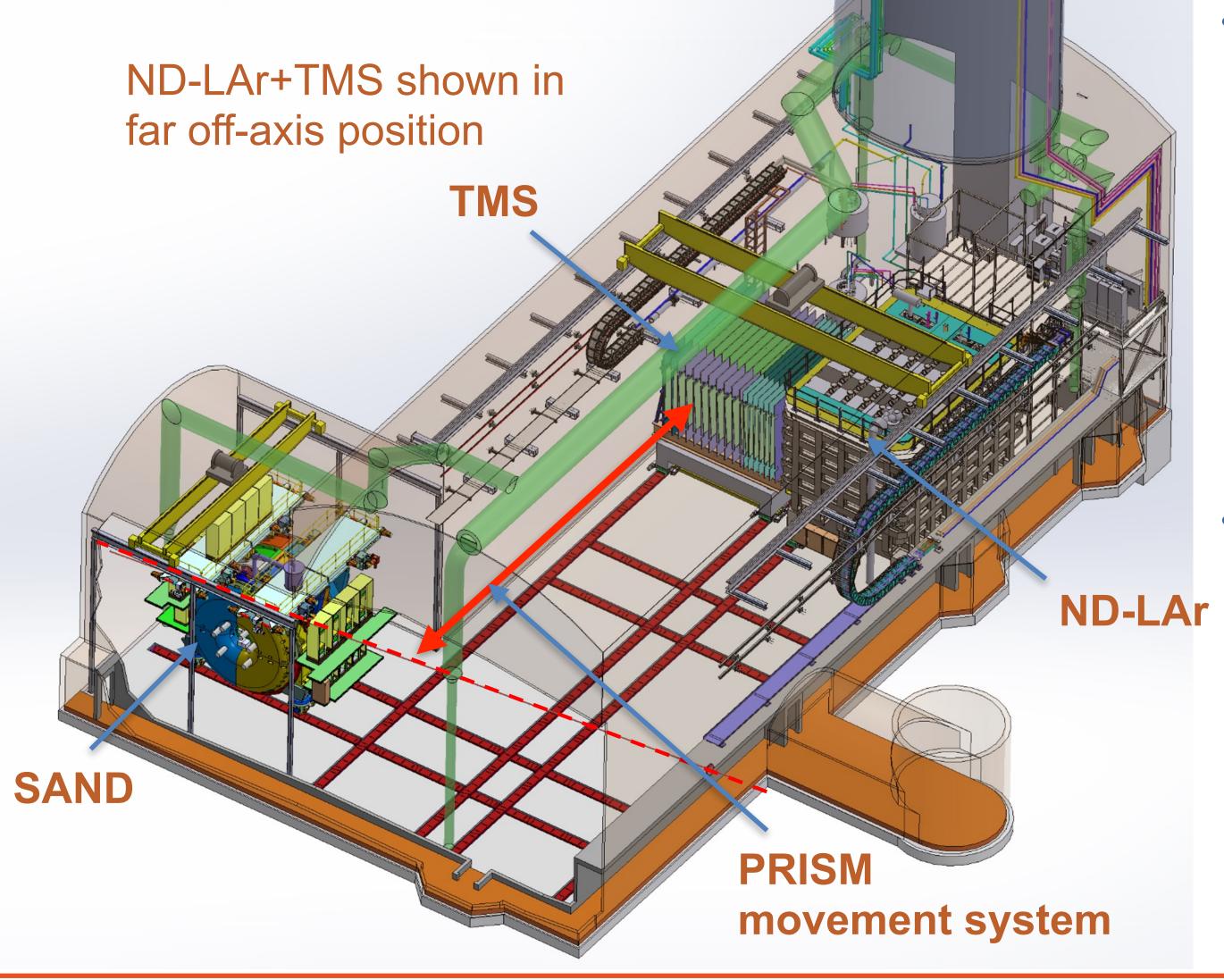




RECAP: EXPOSURE

- A combination of:
 - Accelerator Complex Evolution (ACE): See A. Valishev's talk
 - Additional Far Detector (FD) modules (FD3 + FD4) See M. Bishai's talk
 - Running time result in a large increase in FD exposure
- A commensurate strategy for reducing systematics uncertainties is needed.

See C. Marshall's talk



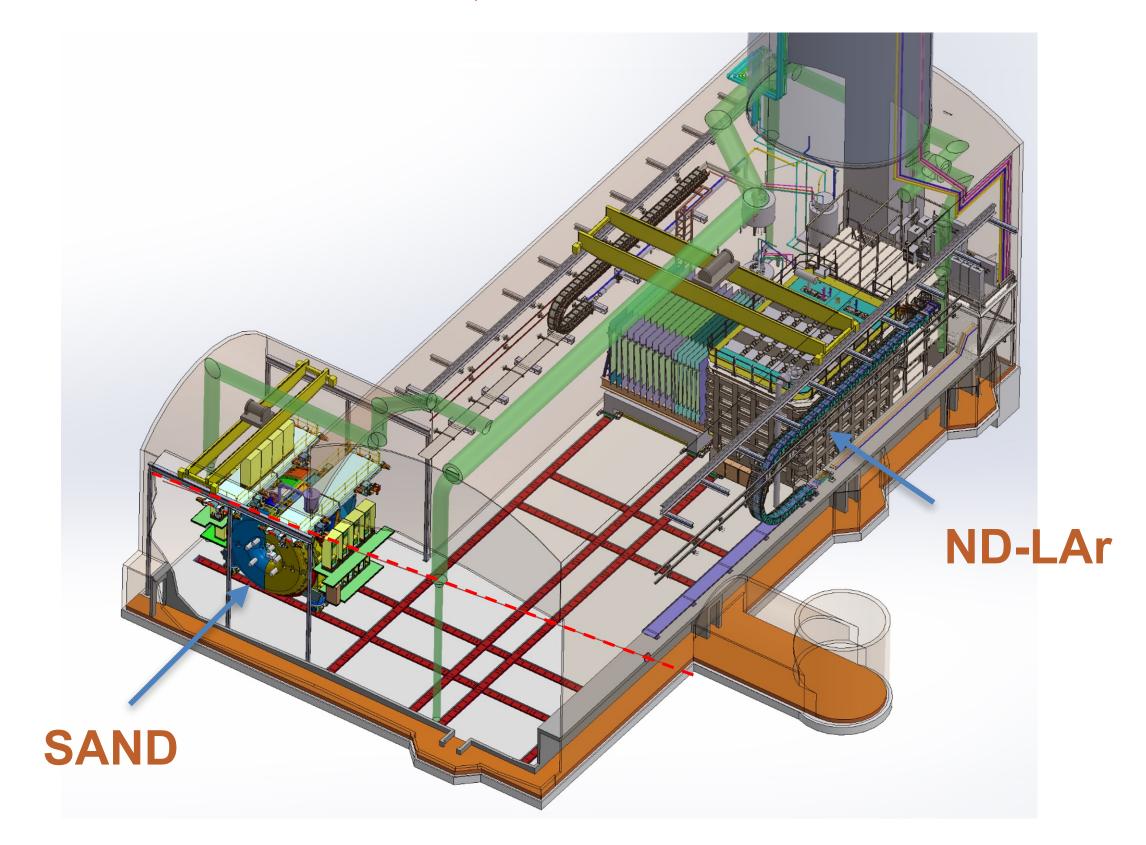
DUNE

RECAP: PHASE I NEAR DETECTOR

- ND-LAr + TMS with PRISM movement
 - ND-LAr: 7 x 5 array of modular 1x1x3 m³ LArTPCs with pixel readout
 - TMS: Magnetized steel range stack for measuring muon momentum/sign from ν_u CC interactions in ND-LAr
 - **DUNE-PRISM: ND-LAr + TMS** move up to 28.5 m off-axis
- SAND:
 - On-axis magnetized neutrino detector with LAr target (GRAIN), tracking (STT), and calorimeter (ECAL)

DUNE

See S. Zeller's talk



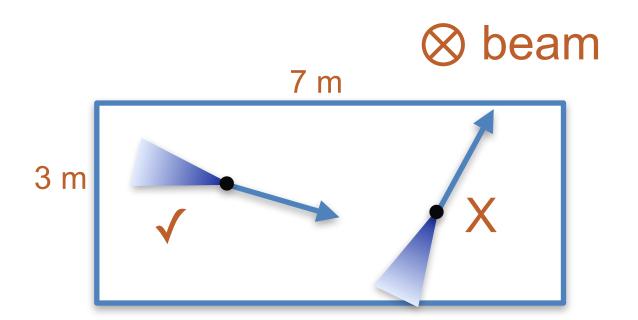
PHASE I ND MEASUREMENT REQUIREMENTS

	Measurement Requirement	Primary Detector
ND-M1	Classify interactions and measure outgoing particles in a LArTPC with performance comparable to or exceeding the FD	ND-LAr+TMS
ND-M2	Measure outgoing particles in v-Ar interactions with uniform acceptance, lower thresholds than a LArTPC, and with minimal 2ndary interactions	ND-GAr
ND-M3	Measure the neutrino flux using neutrino electron scattering	ND-LAr
ND-M4	Measure the neutrino flux spectrum using the "low-v" method	ND-LAr+TMS
ND-M5	Measure the wrong-sign component	ND-LAr+TMS
ND-M6	Measure the intrinsic beam v_e component	ND-LAr
ND-M7	Take measurements with off-axis flux with spectra spanning region of interest	ND-LAr+TMS + DUNE-PRISM
ND-M8	Monitor the rate of neutrino interactions on-axis	SAND
ND-M9	Monitor the beam spectrum and interaction distribution on-axis	SAND
ND-M10	Assess External Backgrounds	(ALL)

- Phase I ND carries out a measurement program to achieve the systematic errors needed for DUNE Phase I goals using
 - LArTPC system moveable off-axis
 - On-axis (fixed) neutrino detector system

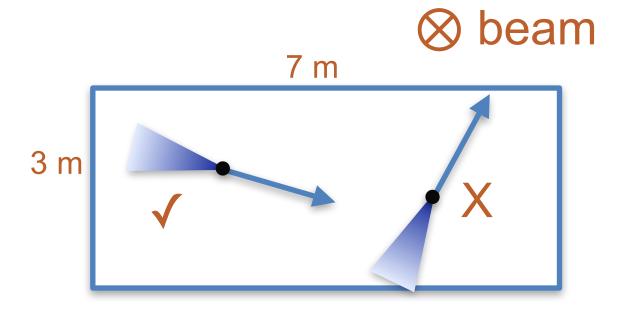
- Significant uncertainty in modeling of final state of ν —Ar interactions
 - Modeling dependence needs to be resolved by detailed measurements of the $\nu-$ Ar final state
 - Due to limitations discussed later, LAr-based detectors have limited ability to tune/verify this modeling
 - Does not impact Phase I physics goals, e.g. mass ordering, maximal CP violation scenario.

- Significant uncertainty in modeling of final state of $\nu-Ar$ interactions
 - Modeling dependence needs to be resolved by detailed measurements of the $\nu-$ Ar final state
 - Due to limitations discussed later, LAr-based detectors have limited ability to tune/verify this modeling
 - Does not impact Phase I physics goals, e.g. mass ordering, maximal CP violation scenario.
- For more ambitious goals with larger exposure (~few hundred kt-MW-years), these systematics start become important
 - e.g., sensitivity to CP violation induced by a large range of δ_{CP} , ultimate precision on δ_{CP}


- Significant uncertainty in modeling of final state of $\nu-Ar$ interactions
 - Modeling dependence needs to be resolved by detailed measurements of the $\nu-$ Ar final state
 - Due to limitations discussed later, LAr-based detectors have limited ability to tune/verify this modeling
 - Does not impact Phase I physics goals, e.g. mass ordering, maximal CP violation scenario.
- For more ambitious goals with larger exposure (~few hundred kt-MW-years), these systematics start become important
 - e.g., sensitivity to CP violation induced by a large range of δ_{CP} , ultimate precision on δ_{CP}
- This motivates a detector that
 - Performs full and detailed reconstruction of $\nu-Ar$ interactions to verify the modeling
 - Complements ND-LAr's role in directly connecting to Far Detector observables.

LAr:

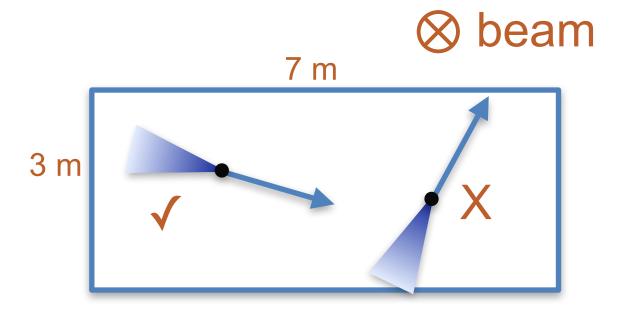
Density: ~1.4 g/cm³ dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm



- Intrinsic features of LAr-based neutrino detection:
 - Tracking thresholds: 1 cm range in LAr corresponds to ~30 MeV KE for protons
 - Secondary interactions: pions/nucleons interact and produce secondary particles
 - Sign selection: limited ability to distinguish π^{\pm} by, e.g. $\pi \to \mu \to e$ tagging
 - Scaleability: Powerful tracking calorimetry capabilities on kton scale.

LAr:

Density: ~1.4 g/cm 3 dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm



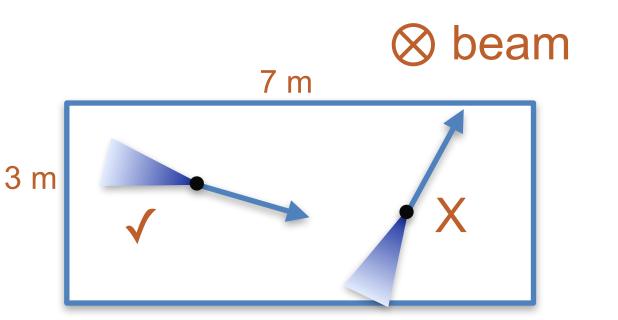
- Intrinsic features of LAr-based neutrino detection:
 - Tracking thresholds: 1 cm range in LAr corresponds to ~30 MeV KE for protons
 - Secondary interactions: pions/nucleons interact and produce secondary particles
 - Sign selection: limited ability to distinguish π^{\pm} by, e.g. $\pi \to \mu \to e$ tagging
 - Scaleability: Powerful tracking calorimetry capabilities on kton scale.

These:

- Limit the ability of LAr-based detectors to resolve the final state of a ν -Ar interaction.
- Apply for nearly any large LAr-based detector

LAr: Density: ~1.4 g/cm³ dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm

- Intrinsic features of LAr-based neutrino detection:
 - Tracking thresholds: 1 cm range in LAr corresponds to ~30 MeV KE for protons
 - Secondary interactions: pions/nucleons interact and produce secondary particles
 - Sign selection: limited ability to distinguish π^{\pm} by, e.g. $\pi \to \mu \to e$ tagging
 - Scaleability: Powerful tracking calorimetry capabilities on kton scale.
- These:
 - Limit the ability of LAr-based detectors to resolve the final state of a ν -Ar interaction.
 - Apply for nearly any large LAr-based detector
- Limitations specific to the ND-LAr+TMS design
 - Tracking calorimetry reconstruction requires containment of particles
 - Activity from neutrino interactions span O(m)
 - Size limitations from hall →non-uniform acceptance
 - Acceptance corrections needed to extrapolate to ~uniform acceptance of far detector

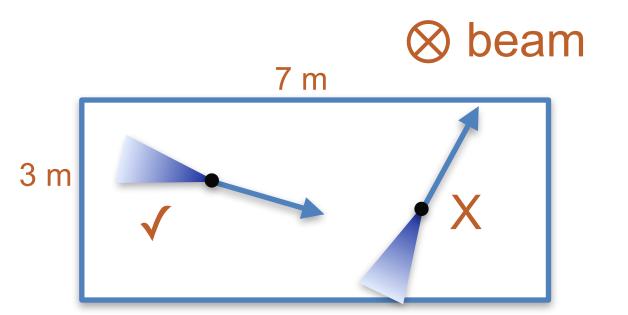

LAr:

Density: ~1.4 g/cm³

dE/dx (MIP): ~3 MeV/cm

~70 cm

 L_{INT}^{π} :



- Intrinsic features of LAr-based neutrino detection:
 - Tracking thresholds: 1 cm range in LAr corresponds to ~30 MeV KE for protons
 - Secondary interactions: pions/nucleons interact and produce secondary particles
 - Sign selection: limited ability to distinguish π^{\pm} by, e.g. $\pi o \mu o e$ tagging
 - Scaleability: Powerful tracking calorimetry capabilities on kton scale.
- These:
 - Limit the ability of LAr-based detectors to resolve the final state of a ν -Ar interaction.
 - Apply for nearly any large LAr-based detector
- Limitations specific to the ND-LAr+TMS design
 - Tracking calorimetry reconstruction requires containment of particles
 - Activity from neutrino interactions span O(m)
 - Size limitations from hall →non-uniform acceptance
 - Acceptance corrections needed to extrapolate to ~uniform acceptance of far detector
- Motivates a "More Capable Near Detector" (MCND) to overcome limitations of the Phase I ND
 - An ND component that is functionally identical to the FD (e.g. LArTPC) remains essential regardless

Density: ~1.4 g/cm³ dE/dx (MIP): ~3 MeV/cm

 L_{INT}^{π} : ~70 cm

LAr:

~1.4 g/cm³ Density: dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm

10 B GAr:

Density: ~0.016 g/cm³ dE/dx (MIP): ~0.025 MeV/cm

DUNE

 L^{π}_{INT} : ~6 x10⁴ cm

Interactions/year at 1.2 MW for 1 ton (~60 m³) of Ar 1.6M ν_{μ} charged current 30K ν_e charged current

- This motivates a neutrino detector that is:
 - An argon-based tracker
 - match far detector, avoid A extrapolation
 - Low density → gaseous, sufficient Ar target mass → High pressure
 - Lower tracking thresholds: 1 cm range corresponds to 2 MeV KE proton
 - Minimal secondary interactions: interaction lengths > 10 m
 - Magnetized → magnetic spectrometry
 - Momentum estimation by curvature $\rightarrow 4\pi$ acceptance
 - Sign selection

LAr:

Density: $\sim 1.4 \text{ g/cm}^3$ dE/dx (MIP): $\sim 3 \text{ MeV/cm}$ L_{INT}^{π} : $\sim 70 \text{ cm}$

10 B GAr:

Density: ~ 0.016 g/cm³ dE/dx (MIP): ~ 0.025 MeV/cm L_{INT}^{π} : ~ 6 x104 cm

Interactions/year at 1.2 MW for 1 ton (~60 m³) of Ar 1.6M ν_{μ} charged current 30K ν_{e} charged current

- This motivates a neutrino detector that is:
 - An argon-based tracker
 - match far detector, avoid A extrapolation
 - Low density \rightarrow gaseous, sufficient Ar target mass \rightarrow High pressure
 - Lower tracking thresholds: 1 cm range corresponds to 2 MeV KE proton
 - Minimal secondary interactions: interaction lengths > 10 m
 - Magnetized → magnetic spectrometry
 - Momentum estimation by curvature $\rightarrow 4\pi$ acceptance
 - Sign selection
- Additional essential components:
 - Calorimetry surrounding the tracking for neutral (γ, n) reconstruction
 - Muon detection systems

LAr:

Density: ~1.4 g/cm³ dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm

10 B GAr:

Density: ~0.016 g/cm³ dE/dx (MIP): ~0.025 MeV/cm L_{INT}^{π} : ~6 x10⁴ cm

DUNE

Interactions/year at 1.2 MW for 1 ton (~60 m³) of Ar 1.6M ν_{μ} charged current 30K ν_{e} charged current

- This motivates a neutrino detector that is:
 - An argon-based tracker
 - match far detector, avoid A extrapolation
 - Low density \rightarrow gaseous, sufficient Ar target mass \rightarrow High pressure
 - Lower tracking thresholds: 1 cm range corresponds to 2 MeV KE proton
 - Minimal secondary interactions: interaction lengths > 10 m
 - Magnetized → magnetic spectrometry
 - Momentum estimation by curvature $\rightarrow 4\pi$ acceptance
 - Sign selection
- Additional essential components:
 - Calorimetry surrounding the tracking for neutral (γ, n) reconstruction
 - Muon detection systems

LAr:

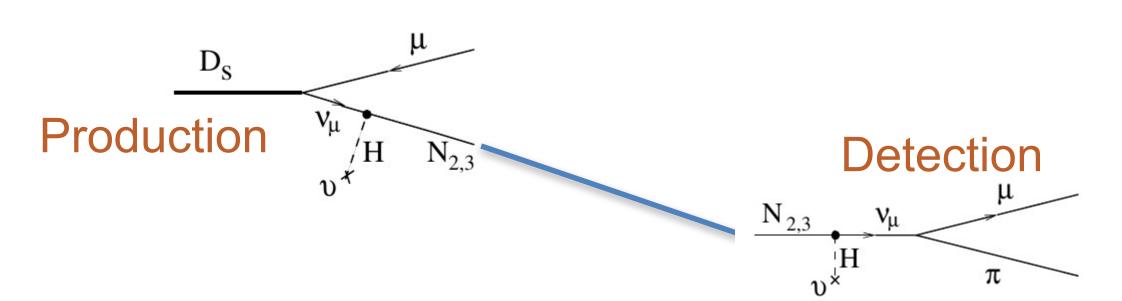
~1.4 g/cm³ Density: dE/dx (MIP): ~3 MeV/cm L_{INT}^{π} : ~70 cm

10 B GAr:

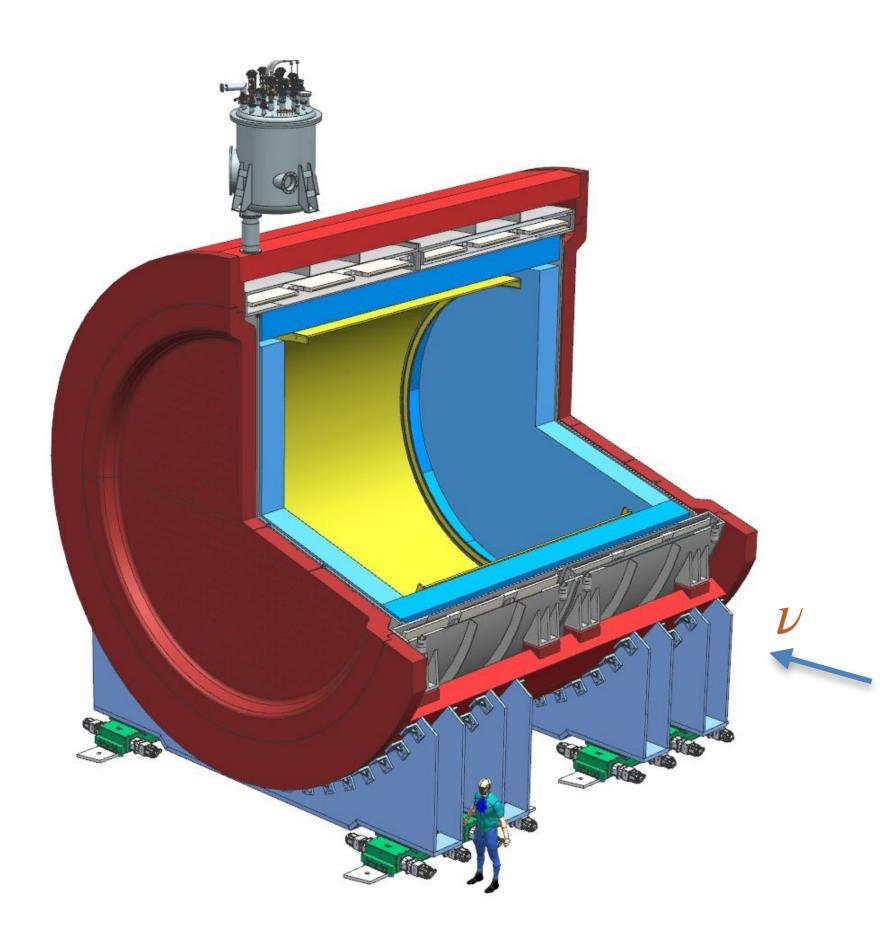
Density: ~0.016 g/cm³ dE/dx (MIP): ~0.025 MeV/cm L_{INT}^{π} : ~6 x10⁴ cm

DUNE

Interactions/year at 1.2 MW for 1 ton (~60 m³) of Ar 1.6M ν_{μ} charged current 30K ν_e charged current


Such a detector would allow full characterization of the final state of ν -Ar interactions

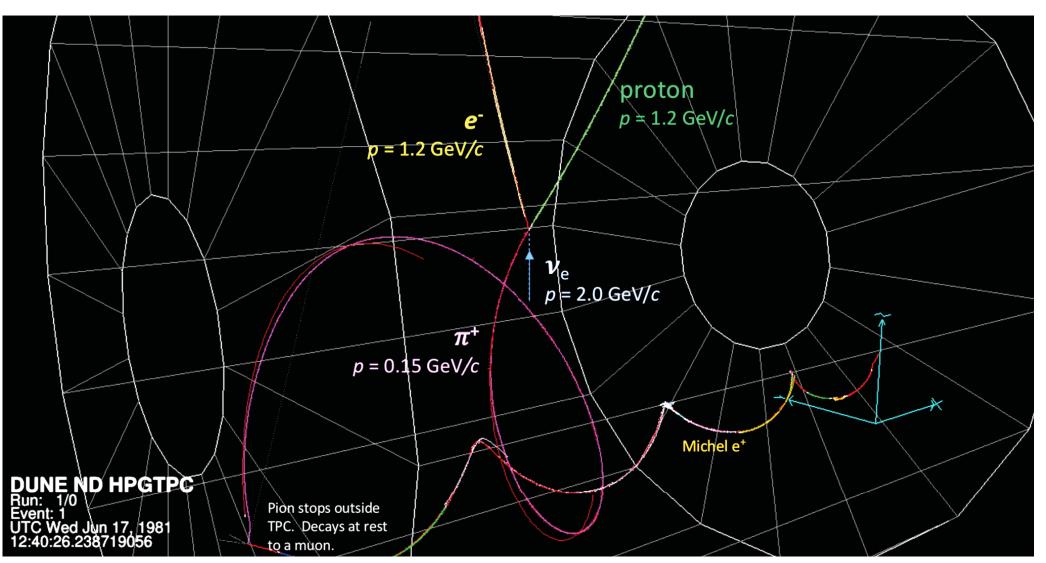
BEYOND THE STANDARD MODEL

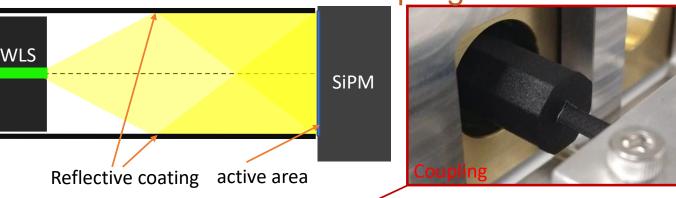

- A detector with these capabilities is a powerful probe for BSM physics
 - Particularly for neutral particles (e.g neutral heavy leptons and axions)
 - produced in the beamline
 - decaying in the detector
 - Favorable signal/background for low density tracker:
 - Signals scale with volume
 - Background from neutrino interactions scale with mass
 - Reconstruction:
 - Clean kinematic reconstruction of decay products
 - Neutrino background rejection from recoil particles

ND-GAR:

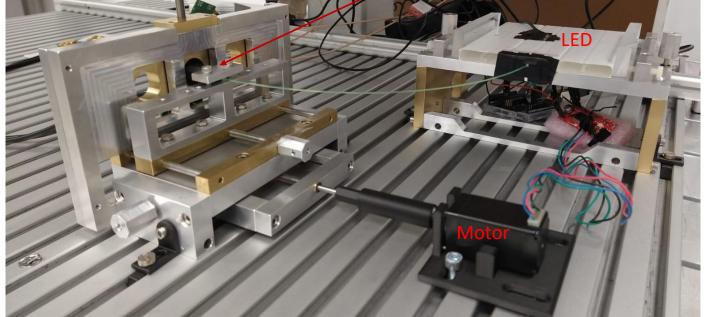
In the Phased approach, the Phase I TMS is replaced by the Phase II MCND

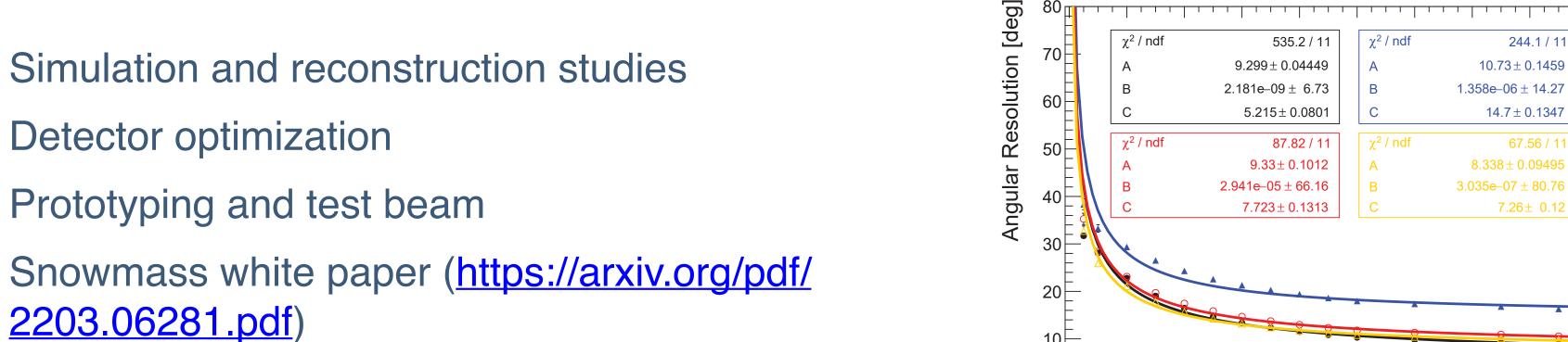
https://inspirehep.net/literature/1854065


- Described in the DUNE Near Detector CDR
 - 0.5 Tesla superconducting solenoid with "partial yolk"
 - 10 bar high pressure argon gas TPC (HPgTPC)
 - 5 m diameter x 5 m length, O(1 ton) of argon target
 - Refurbished ALICE readout chambers
 - CALICE-inspired tile calorimetry system
 - Instrumented magnet yolk for muon detection
- Interest from:
 - Germany (ECAL), India (magnet yolk, vessel), Italy (magnet coils), Spain (light detection, calibration, gas), UK (readout electronics, data acquisition), USA (readout chambers, ECAL)
- ND-GAr would also serves as the muon spectrometer for ND-LAr
 - Placed down-stream of ND-LAr to intercept exiting muons
 - ND-GAr would replace TMS in this role and will move via PRISM



ND-GAR: DESIGN/DEVELOPMENT




ECAL Fiber/SiPM coupling

TOAD (Test of Overpressure Argon Detector) Beam test of readout chambers

 Baseline Cu ▲ 2 mm Pb Ratio Angular △ 0.7 mm Pb Photon Energy [GeV]

Simulation and reconstruction studies

Detector optimization

Prototyping and test beam

Snowmass white paper (https://arxiv.org/pdf/

"A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

Photon Energy [GeV]

MOVING FORWRD

- A new DUNE Phase II organization was launched in 2023:
 - Coordinator: S. Soldner-Rembold (Manchester)
 - Deputy Coordinator: M. Sorel (IFIC, Valencia)
- The Phase II organization will:
 - Convene working groups to explore options for Phase II detectors (ND and FD) according to physics needs
 - For ND, this includes:
 - New Phase II systems such as ND-GAr
 - Potential upgrades to the Phase I detectors
 - Consolidate and prioritize R&D needs
- A Phase II Near Detector workshop is being planned for this summer.
 - 20-22 June in London, UK

SUMMARY:

- ACE, additional modules, running time greatly accelerate the exposure in DUNE FDs
 - A commensurate strategy for ND measurements to reduce systematic uncertainties is needed to support the physics goals of this exposure such as sensitivity to CP violation arising from a large range of δ_{CP}
- Intrinsic features of LAr-based detectors motivate a detector that:
 - Has low density argon as a target to reduce tracking thresholds and secondary interactions
 - Is magnetized and enveloped by calorimetry + muon detector to provide 4π acceptance
- Such a detector would:
 - allow full characterization of $\nu-Ar$ interactions to reduce modeling uncertainties
 - Complement ND-LAr in targeting systematic uncertainties
 - An exquisite instrument to search for a wide class of BSM particle production within the LBNF beam line
- ND-GAr, a detector based on these principles, is described in the DUNE ND CDR
 - There is significant international interest and activity in this detector concept
 - Activities will be coordinated by the new DUNE Phase II organization.

